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I. Introduction

This project was funded to perform three tasks. The first task is to study shock-wave

boundary-layer interactions with bleed. This study is relevant to boundary-layer control in

external and mixed-compression inlets of supersonic aircraft. The second task is to test RAAKE,

a code developed for computing turbulence quantities. The third task is to compute flow around

the Ames ER-2 aircraft that has been retrofitted with containers over its wings and fuselage.

In this report, the accomplishments made in each of the above three tasks are given in the

sections below. Additional details are given in the Appendix in the form of publications.

II. Task 1: Shock-Wave/Boundary-Layer Interactions with Bleed

In this area, the following two studies were made. In the first study, a series of

simulations were performed for the following problem: a supersonic turbulent, boundary layer

flow next to a flat plate with a planar incident oblique shock wave that impinges over a bleed

region in which the bleed into a plenum is through rows of circular holes that are arranged in a

staggered fashion. These simulations investigated the effects of spacing between bleed holes in

the streamwise and spanwise directions.

The results of this study are summarized in Ref. 1 (Ref. 1 is reproduced in the Appendix).

Key findings are as follows: (1) A "barrier" shock was found to form in every hole by the bleed

process itself if the plenum pressure is sufficiently low. (2) These "barrier" shocks were found to

induce considerable disturbances above the plate. (3) When there are rows of holes arranged in a

staggered fashion, bleeding through these holes exerted considerable spanwise influence which is

contrary to single hole or holes in tandem cases. (4) For the range of bleed-hole spacings

investigated, just two rows of holes were able to block the shock-induced adverse pressure

gradient from propagating upstream. This indicates that judicious hole placement can greatly

reduce the amount of bleed needed to control flow separation. (5) Both the streamwise and





spanwisespacingscan exceedthe hole diameterwith the optimum value dependentupon the

boundary-layerprofile createdby bleedand on the amountof adversepressuregradient that

profile canwithstandbeforeseparating.This indicatesthatfurtheroptimizationcanbemadeby

minimizingbleedperunit area.

In the second study, computationswere performed to validate the computational

procedureand examine the effectsof two turbulencemodels. On computationalprocedure,

validation is neededon theoverlappedgrid systemusedandon the OVERFLOWcodeused. On

turbulencemodeling,assessmentis neededon the usefulnessof the algebraicBaldwin-Lomax

turbulence model and the one-equationmodel of Baldwin and Barth. The validation and

assessmentweremadeby comparingpredictedresultswith measuredonesreportedby Willis, et

al. (Ref. 2).

Theoutcomeof thevalidationandassessmentstudiesaresummarizedin Ref. 3 (Ref. 3 is

reproducedin the Appendix). Key findings are as follows. On grid structure and code,

OVERFLOW on an overlappedgrids canprovidevery accurateresultsfor both bleed rate and

boundary-layerprofile abovethe flat plateupstreamanddownstreamof thebleed region. Note

that this validation is for chokedflow through90-degreecircular holesinto a very big plenum.

On the effectsof turbulencemodels,the Baldwin-Lomax(B-L) model was found to produce

accurateresults for bleed rate as well as the boundary layer (BL) pitot-stagnation-pressure

profilesonagrid thatis relativelycoarsein thestreamwisedirectionprovidedseparationbubbles

on theflat plateareeithernon-existentor very small. With a finergrid, B-L wasableto predicta

larger separationbubble, one closerto the correctsize. But, once B-L predicts a separation

bubblethat is sufficiently large,thenresultspredicteddownstreamof it becomelesssatisfactory.

If B-L doesnot predictseparationthoughoneexists,thenthepredictedbleedratewaslower than

shouldbebut thepredictedpitot-stagnationpressuredownstreamof the bleedregionwas found

to beaccurate.ThoughBaldwin-Barthturbulencemodelcanpredictflow separationon the flat

platewith a relativelycoarsegrid in thestreamwisedirection,it too doesnot providesatisfactory

resultsfor this problemif thereis flow separation.





III. Task 2: Development of the RAAKE Code

RAAKE was developed under a previous grant with NASA Ames (NAG 2-709).

RAAKE contains the following two-equation turbulence models: two-layer model of Chen and

Patel, low Reynolds number k-e model of Jones and Launders, a RNG k-e model, and a k-co

model. The discretization was as follows: first- or second-order accurate in time implicit

formula (i.e., Euler implicit or three-point backward), first- or second-order upwind based on

flux-vector splitting for the inviscid terms, and second-order central differencing for the diffusion

terms. The algorithm used to obtain solutions to the system of equations that result from the

discretization was an LU algorithm with novel treatment of diffusion and source terms as

described in Refs. 4 and 5.

During the grant period, the following efforts were made to test RAAKE. First, run

RAAKE decoupled from OVERFLOW; i.e., take a converged solution from OVERFLOW for a

boundary-layer flow in terms of the conserved variables (i.e., p, pu, pv, pw, and e) that was

obtained by using the Baldwin-Lomas model and then use that to compute k and e or k and o_.

RAAKE running in this mode was found to very robust and quickly yielded converged solutions.

Also, it was found to give accurate results in terms of profiles for the turbulence quantities.

Next, RAAKE was coupled with OVERFLOW to simulate the following two problems by using

the low Reynolds number k-e model of Jones and Launders: (1) supersonic boundary-layer flow

past a compression comer and (2) subsonic flow past a backward facing step. For the

compression comer flow, RAAKE was reasonably robust but yielded poor quality results. The

poor quality results may be due to the turbulence model used. For the backward-facing step

problem, RAAKE performed very badly by being not very robust. In fact, the time-step size

needed in order to obtain stable solutions with OVERFLOW was exorbitantly small. Since only

a part of the first year of this grant was devoted to RAAKE, efforts to improve RAAKE were not

carried out.





IV. Task 3: Simulation of Flow over the Ames ER-2 Aircraft

During the second year of the grant, the focus shifted to the Ames ER-2 aircraft.

Basically, the Ames ER-2 aircraft was being retrofitted by having oval-shaped containers

mounted above the fuselage and on the wings. These containers, known as starlinks and pods,

house antennas, probes, computers, and communication equipment. The objective was to

compute flow past this retrofitted aircraft to understand (1) how boundary layers and wakes

induced by the containers affect the overall aerodynamics of the aircraft and (2) the accuracy in

data acquisition from flow disturbances caused by the containers as well as the aircraft itself

about probe regions.

Unlike the earlier two tasks, this task was carried out at NASA Ames by Mark J.

Rimlinger (a Carnegie Mellon graduate student who was sent to work at NASA Ames in 1995)

with guidance from Wei J. Chyu and Andrew C. Roberts of NASA Ames. Thus, all efforts on

this task were carried by Mark Rimlinger, Wei J. Chyu, and Andrew C. Roberts. During 1995,

the following simulations were completed: (1) flow past a wing with pod, (2) flow past a wing

with pod fitted with a camera window, (3) flow past a wing with pod fitted with a recess cavity,

(4) flow past a wing with pod that had an inlet for through flow, (5) flow past a complete ER-2

aircraft (with fuselage, wing, inlet, and boundary-layer diverter) except for the tail, (6) repeat 5

except replace standard wing with extended wing, and (7) repeat 5 except replace wing with

spiroid wing. Though no publications were results, many presentations were made to Lockheed

and NASA. Please see Mark J. Rimlinger, Wei J. Chyu, or Andrew C. Roberts of NASA Ames

for these.
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Shock-Wave/Boundary-Layer Interactions with Bleed
Through Rows of Holes

M. J. Rimlinger* and T. I-P. Shih?

Carnegie-Mellon University, Pittsburgh, Pennsylvania 15213-3890

and

W. J. Chyu_c

NASA Ames Research Center, Moffett Field, California 94035

Computations were performed to investigate three-dimensional, shock-wave/boundary-layer interactions on
a flat plate with bleed through four staggered rows of circular holes that discharge into the same plenum. The
focus of the computations was to examine how bleed through rows of holes affect bleed rate and the pressure
and Mach number distributions. The effects of the following parameters on the flow were investigated: 1) with
and without shock-wave impingement on the boundary layer and 2) spacings between bleed holes in the stream-

wise and spanwise directions. Results show that just two rows of bleed holes arranged in a staggered fashion
placed upstream of the incident shock are adequate in blocking the shock-induced adverse pressure gradient
from propagating further upstream. Results also show that the spacings between the centers of holes can exceed
the hole diameter not just in the streamwise direction, but also in the spanwise direction, and still be able to

control shock-induced flow separation. This study is based on the ensemble-averaged, "full compressible"
Navier-Stokes {N-S) equations closed by the Baldwin-Lomax algebraic turbulence model. Solutions to the
ensemble-averaged N-S equations were obtained by an implicit, partially split, two-factored algorithm with
flux-vector splitting in the streamwise direction on a chimera overlapping grid.

Introduction

S t tOCK-WAVE/BOUNDA RY-LA YER interactions andtheir effective control play an important role in the op-

eration of mixed-compression supersonic inlets. These inlets

utilize shock waves to reduce the incoming air fronl supersonic

to subsonic speeds for the comprcssor. But, the many re-
flected shock waves within the inlet thicken boundary layers

and cause flow distortions. Also, if the shock waves are suf-

ficiently strong, then boundary-layer separation takes place,
which can lead to the unstart condition.

One effective way of controlling the unfavorable effects

produced by shock waves is to phtee bleed holes in regions
where shock waves impinge on the boundary htyer. The im-

portance of bleed in controlling shock-wave/boundary-layer
interactions has led a number of investigators to use both

experimental and numerical methods to study this problem. '"

According to Ifamed and Shang,: though all experimental

studies agree that bleed can control shock-wave/boundary-

htyer interactions, they disagree on how bleed-hole geometric

and operating parameters influence tile effectiveness of tile

bleed process. These discrepancies indicate the complexities

of the flow in the region about bleed holes, in that region,

many parameters can affect the flow with different ones dom-

inating under different conditions.
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right owner.
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Numerical studies of shock-wave/boundary-layer interac-
tions with bleed fall into two groups. One group models

the bleed process by using boundary conditions and/or a
roughness model without resolving the flow through the bleed

holes? 7 The advantage of this approach is that it is more

efficient computationally, which enables a complete inlet con-
figuration to be simulated, as was done in Refs. 4 and 7. The

other group studies the bleed process by resolving the flow

through each bleed hole? _7The advantage of this approach
is that it can reveal the nature of the flow governing the bleed

process. The understanding gained by these studies can guide

the construction of boundary conditions and roughness models

used by the first group.
ttamed et al.," _2 Hahn et al., '-_ and Omi el al. H performed

two-dimensional numerical studies of the flow in and around

bleed holes. These studies modeled the bleed holes as slots.

Hamed et al." _2 studied supersonic boundary-layer flow past

a fiat plate with an incident oblique shock wave. Their studies
resolved the flow above the plate and in the bleed hole or

holes. Hahn et al. '; studied the same problem, except the

flow in the plenum was resolved as well. Omi el al. 'a studied

an entire inlet configuration with a single-hole bleed system
at the inlet's throat.

Though the aforementioned two-dimensional studies pro-

vided valuable insights into the bleed process, realistic bleed
holes are three dimensional instead of two dimensional. Rim-

linger et al.,_5 Shih et al. ,t,, and Chyu et al. _7performed three-
dimensional numerical studies of shock-wave/boundary-layer

interaction on a fiat plate with bleed through circular holes

connected to a plenum. Rimlinger et al. l" and Shih et al. >
showed how bleed-hole placement relative to shock-wave im-

pingement affected upstream, spanwise, and downstream in-

fluence lengths. These studies also showed that if the pressure

in the plenum is sufficiently low, then the bleed process forms
a "barrier" shock in and on the downstream edge of each
bleed hole. The authors noted that this barrier shock can block

information downstream of it from propagating upstream, and

hence, is a mechanism that can be utilized to prevent flow

separation in addition to the mechanism of removing low
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momentumairnext to solid surfiices, in order to utilize the

barrier shock, the authors suggested that bleed holes be lo-
cated slightly upstream of the location where the incident
shock wave impinges on the subsonic part of the boundary

layer. This is so that the barrier shock is formed upstream of

any disturbances created by the impinging shock. Shih et al. "

further noted that the barrier shock also increases mixing in

the spanwise direction because it disrupts the flow locally by
slowing it down and increasing its static pressure. This in-

creased mixing is still another mechanism that can be utilized

to prevent flow separation and control flow distortions. Chyu
et al. _7 showed in detail the bleed rate as well as the formation

and structure of the barrier shock as a function of bleed-hole

angle (30-deg slanted and 90-deg normal to the freestream

direction), number of bleed holes (one or three in tandem),

and pressure ratio across the bleed hole.

In the aforementioned three-dimensional studies, the focus

was on shock-wave/boundary-layer interactions on a flat plate

with bleed through either a single circular hole or three cir-

cular holes ira tandem along the streamwise direction. So far,

no one has investigated bleed through rows of holes (i.e.,

multiple holes in both the streamwise and the spanwise di-

rections). Since these are the hole configurations used in prac-

tice, the objective of this investigation is to stud}' shock-wave/

boundary-layer interactions on a flat plate with bleed through

four staggered rows of circular holes that discharge into the

same plenum. The focus is to examine the effects of the fol-

lowing parameters on the flow: with and without shock-wave

impingement on the boundary layer and spacings between

bleed holes in the streamwise and spanwise directions.

In the next section, the shock-wave/boundary-layer inter-
action problem studied is described. Afterwards, the for-
mulation, numerical method of solution, and results obtained

are presented.

Description of Problem

A schematic diagram of the problem studied is shown in

Fig. I. It involves a supersonic turbulent boundary layer flow-

ing past a flat plate with an incident oblique shock wave,

bleed of the boundary layer through four rows of circular

holes arranged in a staggered fashion, and a plenum where

the bleed is discharged. All dimensions are given in terms of
D, the diameter of all bleed holes, which is 0.2 in. For this

problem, the domain is the region bounded by the dashed

lines that includes the region above the flat plate, the plenum,

and four "'half" bleed holes. Only four half bleed holes are

included because of symmetry in the spanwise direction.
For this problem, the fluid that enters the domain above

the flat plate is air with a constant specific-heats ratio 7 of

1.4. The freestream Mach number M,, static pressure P,, and

a)

air a

c

M_= 1.6 e

1 2 3 4
4 rows of/

• V T
bleed holes

131) _ ]

I _ 23.25D _

Ls _ _ 23.25D _1

I = . 13D _ I

i C freestream D

boundary shock i

', "_. / wave outflow',

H: / /  ,ee .o,e '. --
k"b plenum

b) _ 19D _[

Fig. I

T
30D

21)

10D

Schematic diagram of bleed-hole problem: a) top view and b) side view ah)ng cross section a-b.
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Table 1 Summary of cases studied"

Case no. O, deg L, Shock? h

1 6(1 D No
2 60 D Yes
3 60 1.5D Yes
4 70 D Yes

:_Forall cases. M 1.6. /', 61.32 kPa. T. 3(X)K. D
11._.2in., and L, - L, tan(O): scc Fig. I.

hWhcn there is a shock, lhc shock would impinge or ';trikc
at the center of the bleed holes in Ihc Ihird row under
in'.iscid conditions.

stagnation temperature T, are 1.6, 61.32 kPa, and 300 K,

respectively. This supersonic flow has a turbulent, boundary

layer next to the flat plate. At the inflow boundary, the thick-

ness of that boundary layer 6 is 0.6 in., which is equal to three
times the diameter of the bleed holes. To induce flow of air

through the bleed holes, the back pressures Pc, at the exit of

the plenum is maintained at 0.35P_.
A shock-wave generator characterized by L_ and ¢r can

cause an oblique shock wave to strike the turbulent, boundary

layer on the flat plate. Computations were performed with
and without this shock. When there is this shock, ct was set

at 7.5 deg, which produced a shock wave that was strong

enough to induce flow separation on the flat plate in the

absence of bleed. L_ was chosen so that the shock would

incident on the flat plate fit a distance of 13D measured from

the inflow boundary under inviscid flow conditions (i.e., zero

boundary-layer thickness).

Aside from investigating the bleed process with and without

an incident shock, two aspects of the bleed-hole geometry

were investigated, the angle 0 and the distance (L, and L, =
L, tan 0) between adjacent holes (see Fig. la). The angles

investigated are 0 - 6(I find 7(1 deg. When 0 = 60 deg, the

distance between fill adjacent bleed holes is the same. When

0 - 71) dog, holes in the spanwise direction are closer than

those in the streamwise direction. At 0 - 60 dog, two dis-

tances between bleed holes were investigated, L, - D and

1.5D [recall L, - L, tan(0)]. At 0 - 70 deg, only one distance

between bleed holes was investigated, L, = D. Thus, three
different arrangements of the four rows of bleed holes arc

investigated. For all three arrangements, the bleed holes arc
positioned so that the distance between the inflow boundary
and a line that passes through the centers of the bleed holes

in the third row (see Fig. la) is 13D. Thus, when there is an
incident shock, it would strike at the center of the bleed holes

in the third row under inviscid conditions. All cases studied

are summarized in Table 1.

Formulation of Problem

The flow problem described in the previous section was

modeled by the density-weighted, ensemble-averaged con-
servation equations of mass, momentum ("full compressible"

Navier-Stokcs), and total energy written in generalized co-
ordinates find cast in strong conservation-law form. The ef-

fects of turbulence were modeled by the Baldwin-Lomax

algebraic turbulence model.tS

To obtain solutions to the conservation equations, bound-

ary and initial conditions arc needed. The boundary condi-

tions (BCs) employed in this study for the different boundaries

shown in Fig. 1 were as follows. At the inflow boundary where

the flow is supersonic everywhere except for a very small

region next to the fiat plate, two types of BCs were imposed.

Along segment A-B, all flow variables were specified at the

freestream conditions except fi_r the streamwise velocity (which

had a turbulent boundary-layer next to the flat plate), and

the static temperature (which varied in the boundary layer to
maintain a constant stagnation pressure). The velocity in the

turbulent boundary layer was described by the van Driest

profile when y _ < 50 and by the one-seventh power-law pro-

file when 50 < y' _< y_ (6). Along segment B-C, postshock

conditions based on inviscid oblique shock-wave theory were

specified. These post-shock conditions were also specified along
the freestream boundary (segment C-D). At the outflow

boundary where the reflected shock wave exited the com-

putational domain, the flow is also mostly supersonic except
for a small region next to the flat plate so that all flow variables

were extrapolated. Here, linear extrapolation based on three-

point, backward differencing was employed. The BCs im-

posed at the two symmetry boundaries were zero derivatives

of the dependent variables except for the velocity component

normal to those boundaries that was set equal to zero. At the
exit of the plenum where the flow is subsonic, a back pressure

Pt, was imposed, and density and velocity were extrapolated

in the same manner as the variables fit the outflow boundary.

At all solid surfaces, the no-slip condition, adiabatic walls.

and zero normal-pressure gradient were imposed.

Even though only steady-state solutions were of interest,

initial conditions were needed because the unsteady form of

the conservation equations was used. The initial conditions

employed in this study were as follows. In the region above
the flat plate, the initial condition was the two-dimensional,

steady-state solution for fin incident and a reflected oblique

shock wave on a flat plate based on inviscid oblique shock-
wave theory. The streamwise velocity profile, however, was

modified to give the van Driest/one-seventh power-law pro-
file. This necessitated the density and static temperature to

bc modified as well in order to maintain constant stagnation

temperature in the boundary layer. The initial conditions used

in the bleed hole and plenum were stagnant air fit constant

stagnation temperature 7_, find static pressure Pc,-

Numerical Method of Solution

Solutions to the ensemble-averaged conservation equations

of mass, momentum, and total energy closed by the Baldwin

Lomax algebraic turbulence model described in the previous

section were obtained by using the Overflow code." The

Overflow code contains many algorithms. The one used in

this study is as follows: inviscid flux-vector terms in the ,f-

direction were upwind differenced by using the flux-vector

splitting procedure of Stcger and Warming.-'" Inviscid flux-
vector terms in directions normal to the ¢ direction were cen-

trally differenced in order to reduce artificial dissipation in
those directions. Diffusion terms in fill directions wcrc also

centrally differenced. The time-derivative terms were ap-
proximated by the Euler implicit formula since only steady-

state solutions are sought here. The system of nonlinear equa-

tions that resulted from the aforementioned approximations

to the space and time derivatives were analyzed by using the

partially split method of Stegcr et al. :_

For the bleed-hole problem shown in Fig. 1 and summarized

in Table 1, the computational domain is divided into six zones,

one above the plate, one for each of the four half bleed holes,

and one for the plenum. Each zone has a different coordinate

system in order to align upwind differencing with the stream-

wise direction. For this six-zone computational domain, a
chimera overlapped grid system is employed. Figure 2 shows

an example of the chimera grid system used in the region
around the bleed holes. Note that in this find all subsequent

figures, the spatial dimensions X, Y, and Z arc all nondi-

mensionalized by 23.25D.

For the zone above the fiat plate, the grid system used was

a single solution-adapted H-[ I grid (adaptation was based on

the initial conditions), which has grid points clustered near

the flat plate, bleed holes, and the impinging find reflected

shock waves. The number of grid lines used in this t1-II grid

is as follows: 335 from inflow to outflow and 101 from plate

surface to freestream boundary. Between the two symmetry
boundaries, the number of grid lines differed depending upon

L,, it is 29 when L, = D(cases 1,2, and 4 in Table l),ftnd

41 when L,. = 1.5D (case 3). The grid spacings corresponding
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to 335 x llIl x 29 or 335 x lill × 41 grid points are as

h)llows. In the streamwise direction, they w_ry from 0.51) at

the inflow boundary to 0.{I4D at a distance of 7.375/) before
where the shock wave would impinge on the plate under
inviscid conditions. From 7.375L), beE)re the inviscid-shock-

impingement point, to 4.625/) after that point, the grid spac-
ings are kept constant at (}.(M/). From 4.(_25D after the shock

impingen]ent point to the outflow boundary, they vary from
0.114 to [I.5D. In direction normal to the plate, the grid spac-

ings vitro,' from 4 × 11) "D at the plate to ().45D at the edge
of the boundary layer. The grid points closest to the wall have

r + values less than unity. The total number of grid points in

the boundary layer is about 511. Frorn the edge of boundary

layer to the freestream boundary, they vary from I).45 to
i).751). In the spanwisc direction, the grid spacings arc kept
constant at 0.0385D and that is why the ntm_ber of grid points

is higher when L, is larger. ]tore, it is noted that the grid

spacings in the tt-tt grid above the plate are the same for all

cases studied (i.e., cases 1-4) in order to ensure identical flow

above the plate in the absence of bleed.

For each zone containing a bleed hole, lw'o overlapping

grids were used, an O-tl grid touching the wall of the bleed
hole and an tt-tl grid at the center of the bleed hole. The O-

1t grid with 62 x 47 × 11 grid points is used to resolve the

circular geometry of the bleed hole. The I1-tl grid with 62 x

Ill x 15 grid points is used to eliminate the centcrlinc sin-

41.I ._0_0 0.O6O 0.100

X

Fig. 2 (;rid system near the bleed holes.

gularity associated with the O-tl grid. Note that the grids in
the bleed hole ovcrhtp the grid in the plenum by four grid

lines, whereas they overlap the grid aboxe the flat plate by

only two grid lines. The reason for extending the bleed-h(:,le

grids further into the plenum is It) accelerate convergence rate
to steady state. Since BCs on overlapped boundaries arc of

the Dirichlet type and density-based algorithms such as the

one used here have tl slow convergence rate at low Math

nun]bets, information transfcr between overlapped grids is

slow if the initial conditions involved stagnant flow in both

overlapped grids and if the spacings between the boundaries

of the two overlapped grids are small.

For the zone containing tile plenunl, a single I1-It grid was

used. This tt-tt grid haseithcr 335 x 29 x 51 or 335 × 41

x 51 grid points, depending upon I,,. The grid points are
clustered near walls and bleed holes.

The grid system described previously was generated by us-

mg algebraic grid generation with one-dimensional stretching

functions. (]rid spacings in diflierent grids wcrc made con]-

parable m regions where they overlapped in order to minimize

aliasing error. The clustering and the number of grid points

employed in each zone were dctcrmincd by numerical ex-

periments to ensure the following. First, tim grid must be able
to discern effects of the bleed holes on shock-wave/boundary-

layer interactions. Tiffs required crisp resolution of the inci-
dent and reflected shock waves above the plate :,s well as the
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shock structure in the bleed holes. Second, qualitative fea-

tures of the predicted flowfield and the quantitative data ob-
tained for the bleed rate are grid independent.

During computations, the flowfield in each grid was ana-

lyzed one at a time in the following order: 1) the tt-tt grid

above the flat plate, 2) the tt-H grid in the bleed hole, 3) the

O-|! grid in the bleed hole, 4) repeat 2 and 3 for all bleed

holes, and 5) the H-H grid in the plenum. Information from

one grid was passed to another grid via trilinear interpolation

at grid boundaries. The required interpolation coefficients

were obtained by using the Pegsus code. x_ This process of

analyzing the flow in one grid at a time until all grids are

analyzed was repeated for each time step until a converged
solution was obtained.

Results

Numerical solutions were obtained to investigate shock-

wave/boundary-layer interactions with bleed for the problem

described and formulated in the previous sections and de-

picted in Fig. 1. The focus was to study pressure and Mach
number distributions about the bleed holes with and without

an incident shock and with two different parameters governing
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staggered-hole arrangements, the angle 0 and the distance

between bleed holes L, (see Fig. 1). A summary of the cases

studied is given in Table 1.

Results are given in Figs. 3-6. Figure 3 shows Mach number
contours with and without an incident shock (cases 1 and 2

in Table 1) along three planes perpendicular to the plate.

Figure 4 shows the surface pressure for those two cases as
well as a case that was computed with incident shock, but

without bleed. Figure 5 shows pressure contours on the plate

surface for all four cases. Though the bleed holes are not

marked, they can be discerned by the pressure fields induced

by them (e.g., the barrier shocks). Figure 6 gives the flow
coefficient for each bleed hole. The flow coefficient is defined

as the actual bleed rate divided by the ideal bleed rate with

the ideal bleed rate being sonic flow through the entire bleed

hole at freestream stagnation temperature and pressure. For

the conditions of this study, the ideal bleed rate is 0.01233

kg/s.

Effects of Incident Shock

From Figs. 3a-3c and 4a, it can be seen that even without

an incident shock (case l), the bleed process itself creates a
barrier shock in each bleed hole. These figures also show that
without an incident shock, all barrier shocks have a similar

structure, although those in rows 3 and 4 are slightly stronger

than those in rows I and 2. The following observations can
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Fig. 6 Flow coefficient through each bleed hole.

be inferred from Figs. 3a-3c about the nature of the flow

above the plate, in the bleed holes, and in the plenum. First,
the barrier shocks set up considerable disturbances in the flow

above the flat plate that extend beyond the thickness of the

approaching boundary layer. Second, there is a large sepa-

rated region in each bleed hole. Third, the jets issuing through

the bleed holes into the plenum all have similar penetration
depths and only weakly interact with each other. The weak

interactions between the jets in the plenum can also be in-

ferred from the pressure in the plenum. Though not shown
here (see Ref. 23), the static pressure in the region between

the jets in the plenum is nearly the same.

Figures 3d-3f and 4b show that with an incident shock (case

2), the structures of the flow upstream of that shock are almost

identical to those for the case without the incident shock (case

1). After where the incident shock impinged on the boundary
layer (which is slightly upstream of the bleed holes in the third

row), the Mach number and pressure contours begin to differ
considerably from the case without the incident shock. The

most pronounced differences are as follows. First, barrier

shocks in rows 3 and 4 are much stronger than those in rows

1 and 2 for obvious reasons. Second, the jets issuing through

bleed holes in rows 3 and 4 penetrated much deeper into the
plenum than those in rows 1 and 2. This is because the incident

shock increased the amount of bleed by increasing the density

and static temperature of the flow above the flat plate and
by reducing the size of the separation bubble in the bleed

holes. Third, jets issuing through bleed holes in rows 3 and

4 interact. These interactions affect the structure of the jet in

the bleed hole and in the plenum, and hence, the bleed rate.

At this point, it is interesting to note that despite the afore-
mentioned differences, the disturbances in the flow above the

plate created by bleed with and without the incident shock

appear to be of similar magnitude.

Figure 5 shows differences created by an incident shock in

terms of surface pressure. Without an incident shock (case
1), the following observations can be made. First, the surface

pressure reduces as the flow approaches each bleed hole:

reaches a minimum in regions between bleed holes in the

spanwise direction; and then increases again until approaching
another bleed hole. The minimum pressure region between

the bleed holes in the spanwise direction arises because the

flow above the plate is highly accelerated towards the holes

by Prandtl-Meyer expansion waves, which lower static pres-

sure. Second, the region of minimum pressure between the

bleed holes has a chevron shape and it connects holes in the
spanwise direction. This indicates that when there are rows

of holes arranged in a staggered fashion, each bleed hole

exerts considerable spanwise influence. This is in sharp con-

trast with the results obtained for a single bleed hole "_ and

three holes along the streamwise direction. 17 Third, though

not shown, the pressure gradients on the plate surface cor-
respond to the following shear stresses that reflect on the

fullness of the boundary layers above the surface (i.e., the

higher the shear, the fuller the boundary layer, and vice versa):
1) Shear stress is highest in the region just downstream of

each bleed hole because low momentum fluid was just bled
and because of the strong favorable pressure gradient induced
by the barrier shock.

2) Shear stress is lowest in regions between the barrier

shocks in the spanwise direction because of the adverse pres-
sure gradient that they induce.

3) In the spanwise direction, shear stress oscillates between

high (downstream of a hole) and low (downstream of a be-

tween-hole region). With an incident shock, Fig. 5 (case 2)
shows the following: first, holes in row 2 can be seen to block

effectively (though not completely as described later) the ad-

verse pressure gradient created by the incident shock. Thus,
rows of holes arranged in a staggered fashion can behave like

a slot in its ability to block downstream information from
propagating upstream via the barrier shocks. Second, in the

region downstream of the incident shock, the band of mini-

mum pressure about the holes in the spanwise direction does
not have the chevron shape.

From Fig. 6, it can be seen that even when there are no

incident shocks, the flow coefficient (and hence, bleed rate)
increases from row 1 to 4. The increase is small from row 1

to 2 and from row 3 to 4. But, the increases from row 1 to 3

and from row 2 to 4 are more significant because of the barrier
shocks in rows 1 and 2. The increases in bleed rate and flow

coefficient from row 1 to 3 were found to be similar to the

increase from row 2 to 4. When there is an incident shock,

Fig. 6 shows that the flow coefficients in all rows were higher
than those for the case without the incident shock. For cases

1 and 2, the difference indicates that the high pressure down-

stream of the incident shock did propagate upstream through

the subsonic part of the boundary layer, though not appre-
ciably. For cases 1, 3, and 4, the differences in the flow coef-

ficients are also due to different spacings between holes. Fig-

ure 6 also showed that the flow coefficients increase considerably
from row 1 to 3 and from row 2 to 4. This, of course, is

primarily due to the markedly increased pressures created by
the incident shock.

Effects of Hole Arrangement

The effects of the angle 0 on shock-wave/boundary-layer
interactions with bleed can be seen by examining the results

for cases 2 and 4. In case 2, the angle 0 is equal to 60 deg,
and in case 4, that angle is equal to 70 deg. Note that for both

cases, L, = D, so that the distance between rows (L,) for
case 4 is greater than that for case 2. Also, note that for both

cases, the third row is positioned at 13D from the inflow

boundary (see Fig. 1). From Fig. 5, it can be seen that case

4 has larger regions with adverse pressure gradients than case
2. This is expected since the distance between rows is in-

creased. Though this implies that case 4 is less resistant to

flow separation than case 2, flow separation did not take place

for either of these cases• This indicates that rows can be spaced
further apart in the streamwise direction and still be able to

control boundary-layer separation. With a larger separation

distance, fewer bleed holes would be needed to span a given

streamwise length, which would reduce the overall amount
of bleed.

The effects of the distance between bleed holes for a given

angle 0 can be seen by examining the results for cases 2 and

3. For both of these cases, the angle 0 is equal to 60 deg, but

L,. equals D for case 2 and 1.5D for case 3. Also, for both
cases, the third row is positioned at 13D from the inflow

boundary (see Fig. 1). By having L, greater than D it is
possible for information downstream of the incident shock to

propagate upstream between the bleed holes along the
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streamwisc direction without having to "'wind" around the

holes as in cases 1, 2, and 4. From Fig. 5 (case 3), it can be

seen that this is not the situation, however. Though the up-

stream influence due to the incident shock is greater for case

3 than case 2, the boles in row 2 still effectively blocked the

shock-induced adverse pressure gradient from propagating

further upstream. This blockage wits able to prevent flow

separation for case 3.

('ase 3 can also be compared with case 4 since these two

cases have the same L,, but different L,. Comparing these

two cases in Fig. 5 shows that with it larger L,, the upstream

influence length is hmger. With a hmger upstream influence

length, the region of minimum pressure between the bleed

holes in the spanwise direction is no Ringer connected. How-

ever, as noted earlier, the configuration represented by case

3 was still able to block effectively the shock-induced adverse

pressure gradient and prevent flow separation. This is because

bleed causes the boundary-layer profiles just downstream of

a hole to be ft, llcr, and this fuller profile can withstand it

larger region of adverse pressure gradient, Thus, both L, and

L,, can exceed D. The spacing of the holes should depend

on the boundary-layer profile created by bleed and on the

amount of adverse pressure gradient that profile can withstand

in order to control flow separation with minimum bleed.

Figure 6 shows the following effects of bleed-hole arrange-

mcnt on bleed rate and flow coefficient. First, bleed rate and

flow coefficient are strong functions of L,. This can be seen

by comparing these two parameters in cases 2 and 4, which

shows that the higher the value of L,, the higher arc the bleed

rate and flow coefficient. Second, the effect of L, on bleed

rate and flow coefficient is less than that of L,. This can be

seen by comparing these two parameters in cases 3 and 4.

Concluding Remarks

This three-dimensional computational study showed how
0, the distance between bleed holes, and whether an incident

shock strikes the boundary layer or not affect shock-wave/

boundary-layer interactions on a flat plate with bleed. Based

on this study, the following conclusions can be made. First,

a barrier shock forms in every hole by the bleed process itself

if the plenum pressure is sufficiently low. Second, these bar-

rier shocks reduce considerable disturbances above the plate.

Third, when there arc rows of holes arranged in a staggered

fashion, bleeding through these holes exerts considerable

spanwise influence. Fourth, h)r the bleed-hole spacings in-

vestigated, only two rows of holes were nccdcd to block the

shock-induced adverse pressure gradient from propagating

upstream. This indicates that judicious hole placement can

greatly reduce the amount of bleed needed to control flow

separation. Fifth, both L, and L, can exceed D with the

optimt, m value dependent upon the boundary-layer profile

created by bleed and on the amount of adverse pressure grit-

dicnt that profile can withstand before separating. This in-

dicates that further optimization can be made by minimizing

bleed per unit area.
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ABSTRACT

Computations were performed to investigate
three-dimensional, shock-wave/boundary-layer
interactions on a flat plate with bleed through

eight rows of normal circular holes arranged in a
staggered fashion under choked conditions. The
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grid distribution by comparing predicted results
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INTRODUCTION

Effective control of shock-wave/boundary-

layer interactions is essential to the successful
operation of a wide variety of aerodynamic and
propulsion devices. These devices include
mixed-compression supersonic inlets, transonic
wind tunnels, and airframe of supersonic aircraft.
Supersonic or transonic flows through such
devices usually exhibit shock waves generated by
geometrical changes or back pressure constraints.
The adverse pressure gradients created by these
shock waves cause flow distortion, and if suf-

ficiently strong, can also cause flow separation 1
with the latter often leading to highly detrimental

effects on performance.

One widely used method for controlling
detrimental effects of shock-wave/boundary-layer
interactions is bleed. Control through bleed

consists of placing holes or slots in vicinities
where shock waves impinge on the boundary

layer. These bleed holes, being connected to one
or more plenums at lower pressures, remove the
low momentum fluid next to the wall so that the

remaining boundary layer, having higher
momentum, can now withstand the adverse

pressure gradient without separating. Although
bleed is an effective method of control, it has

associated penalties. In the case of supersonic
mixed-compression inlets, removal of boundary
layer fluid reduces mass flow for propulsion,
decreases total pressure recovery, and increases
drag because of the need to vent bled air into the
freestream. Thus the designer must try to bring





about the most effective control with the least
amount of bleed.

The importance of bleed in controlling shock-
wave/boundary-layer interactions has led a num-
ber of investigators to use both experimental and
computational methods to study this problem 1-15.

Computational studies -- if they can be validated
-- are of particular interest because they have the
potential to reveal considerable details about the
flowfield and they can be used as a design tool.

Recently, Willis, et al. 15 reported detailed mea-
surements of pitot-stagnation-pressure proftles at
several stations in a shock-wave/boundary-layer/

bleed interaction problem which can be used to
validate computations. Thus, the objective of this
investigation is to compute the problem studied by
Willis, et al. with focus on validation. Other

computational issues touched upon include the
turbulence model used and grid distribution.

In the next section, the problem studied is
described in detail. Afterwards, the formulation,
numerical method of solution, and results

obtained are presented.

DESCRIPTION OF PROBLEM

The problem investigated by Willis, et al.9 is
shown in Fig. 1. Since our interest is in the
region about the bleed holes, the domain was
contracted to render it tractable but in a way that
would still capture the essence of the original

problem. The contracted problem is shown
schematically in Fig. 2 (not drawn to scale).

The problem studied involves a supersonic
turbulent boundary layer flow on a flat plate with
an embedded incident and reflected shock wave,

bleed of the boundary layer through eight rows of
circular holes drilled vertically in the plate and

arranged in a staggered fashion, and a plenum
where the bled air is discharged. For this

problem, the domain is the region bounded by the
dashed lines which includes the region above the

flat plate, the plenum, and the eight "half" bleed
holes. Only eight "halF' bleed holes needed to be
included in the domain because of the symmetry

in the spanwise direction.

The physical dimensions of this problem are
as follows (see Fig. 2): All bleed holes have the
same diameter D (0.635 cm). Bleed holes

between adjacent rows and columns are spaced D
apart in the spanwise direction (y-coordinate) and
2D apart in the streamwise direction (x-
coordinate) -- measured from hole centers. The

flat plate has a thickness of D. The length (L) and
height (H) of the region above the flate plate are
36.47 cm and 15.9 era, respectiv.ely. The plenum
dimensions, I_ and Hp, are 13.65 cm and 10 era,

respectively. The edge of the ftrst row of bleed
holes is Lb (8.2 era) downstream of the inflow
boundary. The shock-wave generator is located
at a distance l.,s upstream of the inflow boundary
so that the incident shock wave would impinge on
the flate plate midway between the fourth and the
fifth row of bleed holes if the flow above the plate

had a uniform profile, a was set equal to 8 °
which produced an incident shock wave that was
strong enough to induce flow separation on the
flat plate in the absence of bleed.

The flow conditions for this problem are as
follows: The fluid that enters the domain above

the flat plate is air with a constant specific-heats
ratio (y) of 1.4. The freestream Math number
(M**), stagnation pressure (Po), and stagnation

temperature (To) are 2.46, 172.36 KPa, and
291.6 K, respectively. This supersonic flow has
a turbulent, boundary layer next to the flat plate.
At the inflow boundary, this boundary layer has a
thickness of 2.63 era (or 4.14D), a displacement
thickness of 0.727 era, a momentum thickness of
0.196 era, and a friction factor of 1.43 x 10 -3. To

induce flow of air through the bleed holes, the

back pressures (Pb) at the exit of the plenum was
set at 0.0321Po which caused the flow through
the bleed holes to be choked.

FORMULATION OF PROBLEM

The flow problem described in the previous
section was modelled by the density-weighted,
ensemble-averaged conservation equations of
mass, momentum ("compressible" Navier-
Stokes), and total energy written in generalized
coordinates and cast in strong conservation-law
form. Two different turbulence models were
used. One model is the Baldwin-Lomax algebraic

turbulence model 16. The other is the Baldwin-

Barth one-equation model 17. Since the conser-
vation equations and the turbulent models used
are well documented in the literature, additional

details are not given.
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In order to obtain solutions to the conser-

vation equations, boundary and initial conditions
are needed. The boundary conditions (BCs)
employed in this study for the different
boundaries shown in Fig. 2 are as follows. At
the inflow boundary where the flow is supersonic
everywhere except for a very small region next to
the flat plate, two types of BCs were imposed.
Along segment A-B, all flow variables were
specified at the freestream condition except those
in the region containing the boundary layer. In
the boundary layer, the pitot-stagnation-prcssure
profile measured by Willis, et al. was used to
compute a velocity profile by assuming constant
static pressure in the boundary layer and using the
Raylcigh supersonic pitot formula in the
supersonic region and isentropic relations in the
subsonic region 18. The static temperature profile
in the boundary layer was computed by using the
adiabatic Crocco-Busemann relation 19 with a

recovery factor of 0.89. The remaining quantities
needed in the boundary layer readily follow from
constitutive relations. Along segment B-C, post-
shock conditions based on inviscid, oblique,

shock-wave theory were specified. These post-
shock conditions were also specified along the
freestream boundary (segment C-D).

At the outflow boundary where the reflected
shock wave exited the computational domain, the
flow is also mostly supersonic except for a small
region next to the flat plate so that all flow
variables were extrapolated. Here, linear
extrapolation based on three-point, backward
differencing was employed. The BCs imposed at
the two symmetry boundaries were zero
derivatives of the dependent variables except for
the velocity component normal to those boundary
which was set equal to zero. At the exit of the
plenum where the flow is subsonic, a back
pressure (Pb) was imposed, and density and

velocity were extrapolated in the same manner as
the variables at the outflow boundary. At all solid

surfaces, the no-slip condition, adiabatic wails,
and zero normal-pressure gradient were imposed.

Even though only steady-state solutions were
of interest, initial conditions were needed because
the unsteady form of the conservation equations
was used. The initial conditions employed in this
study were as follows. In the region above the

flat plate, the initial condition was the two-
dimensional, steady-state solution for an incident

and a reflected oblique shock wave on a flat plate
based on inviscid, oblique, shock-wave theory.
The boundary layer region was modified
according to that described earlier for the inflow
boundary. The initial conditions used in the bleed
hole and plenum were stagnant air at constant
static pressure (Pb) with a density equal to the air
density at the plate surface.

NUMERICAL METHOD OF SOLUTION

Solutions to the ensemble-averaged conserva-
tion equations along with the turbulence models
described in the previous section were obtained
by using the OVERFLOW code. The details of

this code is described by Buning and Chan 20.
The OVERFLOW code contains many
algorithms. The one used in this study is as
follows: All convection and diffusion terms were

centrally differenced with a blended second- and
fourth-order artificial dissipation function added
to maintain numerical stability. The time-
derivative terms were approximated by the Euler

implicit formula since only steady-state solutions
were of interest. The system of nonlinear
equations that resulted from the aforementioned
approximations to the space- and time-derivatives
were analyzed by using a diagonalized ADI
scheme 21. In OVERFLOW, Jacobians and metric

coefficients are interpreted as grid-cell volumes
and grid-cell surface areas, respectively. In this
regard, all algorithms in OVERFLOW are

implemented in the finite-volume manner.
However, BCs in OVERFLOW are implemented
in a finite-difference manner in order to enhance

flexibility and ease in investigating different
problems.

For the bleed-hole problem shown in Fig. 2,

the computational domains were always divided
into 18 zones -- one above the plate, two for each
of the eight bleed holes, and one for the plenum.
For this 18-zone computational domain, a
Chimera overlapped grid system was employed.
An example of the Chimera grid system used is
shown in Figs. 3 and 4. For the zone above the

flat plate, the grid system used was a single
solution-adapted H-H grid (adaptation was based
on the initial conditions) which has grid points
clustered near the flat plate, bleed holes, and the
impinging and reflected shock waves (Fig. 3).
The number of grid lines used in this H-H grid is
as follows: either 351 or 595 from inflow to
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outflow, 201 from plate surface to freestream
boundary, and 23 between the two symmetry
boundaries.

For each zone containing a bleed hole, two
overlapping grids were used -- an O-H grid
touching the wall of the bleed hole and an H-H
grid at the center of the bleed hole (Fig. 4). The
O-H grid with 125 x 47 x 27 grid points is used
to resolve the circular geometry of the bleed hole.
The H-H grid with 125 x 11 x 19 grid points is
used to eliminate the centerline singularity associ-
ated with the O-H grid. Note that the grids in the
bleed hole overlap the grid in the plenum and the
grid above the flat plate. The reason for extend-
ing the bleed-hole grids further into the plenum is
to accelerate convergence rate to steady-state 13.

For the zone containing the plenum, a single
H-H grid was used (Fig. 3). This H-H grid has
either 275 x 55 x 23 or 495 x 55 x 23 grid points.
The grid points are clustered near walls and the
bleed holes.

The grid system described above was gener-
ated by using algebraic grid generation with one-
dimensional stretching functions. Note that grid
spacings in different grids were made comparable
in regions where they overlapped in order to
minimize aliasing errors. Also, note that two
different grid systems were used for the plate and
plenum -- one with fewer points (henceforth re-
ferred to as the coarse mesh) and one with almost
double the number of points in the streamwise
direction (henceforth referred to as the fine mesh).

During computations, the flowfield in each
grid was analyzed one at a time in the following
order: (i) the H-H grid above the flat plate, (ii)
the H-H grid in the bleed hole, (iii) the O-H grid
in the bleed hole, (iv) repeat ii and iii for all bleed
holes, and (v) the H-H grid in the plenum.
Information from one grid was passed to another
grid via trilinear interpolation at grid boundaries.
The required interpolation coefficients were ob-

tained by using the PEGSUS code 22. This pro-
cess of analyzing the flow in one grid at a time
until all grids are analyzed was repeated for each
time step until a converged solution was obtained.
Typically, 3000 time steps or iterations are needed
in order to obtain a converged solution. The
amount of CPU time needed on a Cray C-90 is

about 16 hours for the coarse mesh and 30 hours
for the fine mesh

RESULTS

Numerical solutions were performed to
investigate the shock-wave/boundary-layer/bleed

interaction problem of Willis, et al.15 focusing on
validation. Since the accuracy of the compu-
tations is a strong function of both the turbulence
model and the grid distribution, these two issues
are touched upon. A summary of the cases
studied is given in Table 1. Cases were run with
and without bleed for two different turbulence
models: Baldwin-Lomax and Baldwin-Barth. For

the cases with bleed, solution were obtained by
using a coarse grid and a fine grid.

Table 1. Summary of Cases Studied

Case Bleed?. Turbulence Grid
No. Model

1 No Baldwin-Lomax Coarse
2 No Baldwin-Barth Coarse
3 Yes Baldwin-l.x)max Coarse
4 Yes Baldwin-Barth Coarse
5 Yes Baldwin-Lomax Fine

Table 2. Bleed Rates (kg/s)

Baldwin-Lomax Baldwin-Barth Exp.
(coarse mesh) (coarse mesh)

0.0781 0.0826 0.0885

Results for this study are given in Table 2 and
Figs. 5 to 11. Table 2 gives the computed and the
measured bleed rates in which the computed
results were obtained by using the coarse mesh.

Figures 5 and 6 show a side view (i.e., the x-y
plane passing through section a-b in Fig. 2) of the
Mach number and pressure contours for Case 3.
Figures 7 and 8 show a side view of the Mach
number and pressure contours in the region about
the bleed holes with and without bleed (Cases 2 to

4). Figure 9 shows a top view (i.e., x-y plane) of
the pressure contours on the plate surface.
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Finally, Figs. 10 and 11 compare the predicted
pitot-stagnation-pressure profiles against the

values measured by Willis, et al.15 These results
axe described below along with results for Case 5
which axe not shown because they are quali-
tatively similar to those of Cases 3 and 4.

General Features of the Flow To

provide a framework for the discussion on
turbulence models, grid distributions, and valida-
tion, the overall flow features are briefly
described. From Figs. 5 and 6, it can be seen that
the incident and reflected shock waves were

captured relatively crisply by the solution-adapted
coarse mesh. From these two figures, one can
also see the bleed-generated barrier shocks
emanating from the bleed holes and extending
upwards through the boundary layer -- creating a
wave-like boundary-layer edge over the bleed
region. Figures 5 to 8, 10, and 11 show how the
barrier shock affect both the incident and the

reflected shocks. In particular, note the waviness
in the pitot-stagnation pressure profile at the
stations near x= 10.0 cm and 13.5 cm in Fig. 10.

Figures 5 to 8 also show the choked flow in
the bleed holes as well as the jet-like flow in the
plenum issuing from the bleed holes. Jets from
bleed holes upstream of the incident and reflected
shocks do not seem to interact with each other

appreciably. Jets from bleed holes downstream
of the incident and reflected shocks, however, do

have significant interaction. This enhanced
interaction is due to the significantly higher mass
flow rates through these holes.

From Figs. 7(a) and 8(a), one can see that, in
the absence of bleed, the incident shock wave is

sufficiently strong to induce a large separated
region on the fiat plate. The results shown in
Figs. 7(a) and 8(a) for the no bleed case were
computed by using the Baldwin-Barth turbulence
model (Case 2).

Most of the flow features described above

have been reported in Refs. 5, 7, 12, and 13.
Readers are referred to these references for further
information.

Effects of Turbulence Model and Grid

I_.L3p..IIIj_9_ One focus of this study is to
touch upon the effects of turbulence model and
grid distribution on the computed results. In the

following, we discuss these two aspects without
reference to the experimental data. The

experimental data of Willis, et al.15 will be
referred to and compared against in the sub-
section on vaadafion.

From Figs. 7 to 9 and Table 2, one can see
the differences between the results obtained by the
Baldwin-Lomax (B-L) and the Baldwin-Barth (B-
B) models. The most important difference is the

predicted extent of flow separation. The B-B
model predicted a larger separation bubble than
did the B-L model. The separation bubbles of
interest axe those located in a region on the fiat
plate between the third and the fifth row of bleed
holes (Fig. 9). The formation of these separation
bubbles are due to the adverse pressure gradient
created by the incident shock. The prediction of a
larger separated region by the B-B model has sig-
nificant implications. With a larger separation
bubble, the reflected shock is shifted upstream
(see pitot stagnation-pressure profile at stations
near x = 7.5 cm and 10 cm in Fig. 10). This shift
exposes more bleed holes to higher static pres-
sures which increases the bleed rate (Table 2).

Another difference between the two turbu-

lence models is the predicted pitot-stagnation-
pressure profiles downstream of the bleed region
as shown in Fig. 11. From this figure, it can be
seen that, the B-L model gives a much fuller
profile with higher pitot-stagnation pressure near
the wall than does the B-B model (see profiles at
station near x = 25.0 cm in Fig. 11). Since these

profiles are used to evaluate flow distortion, it can
be seen that the turbulence model used can make a

considerable difference. These predictions are
described in more detail in the next sub-section.

To discuss the effects of grid distribution on

the computed results, recall that both the coarse
and the fine meshes have the same number of grid

points in the bleed holes. They differ only in the
plenum and above the plate, and that difference is
in the number of grid points along the streamwise
direction and not in the normal direction. In the

normal direction, both the coarse and the fine

meshes have grid points highly clustered to the

fiat plate (y+ < 1 for the first point away from the
wall). With that as a backdrop, it was found that

with more grid points in the streamwise direction,
the B-L model predicted a larger separation
bubble with size similar to that predicted by the B-





B model on the coarse mesh. With a larger

separation bubble, the reflected shock shifted
upstream, and the bleed rate increased. Here, it is
noted that with the larger separation bubble, the

pitot-stagnation-pressure profiles also changed
downstream of the bleed region, and agreed better
with the measured values than did the B-B model.

Validation In this section, the quality of the

computations is evaluated by comparing the
predicted pitot-stagnation-pressure profiles
against the measured ones reported by Willis, et
al. 15 The predicted and measured bleed rates are

also compared. These comparisons are given in
Figs. 10 and 11 and in Table 2 for the coarse
mesh. See Fig. 1 to get an appreciation for the
relative locations in the flow domain where pitot-

stagnation-pressure pro-fries are compared. The
bleed region is between x = 0 and x -- 9.525 cm.

From Figs. 10 and 11, it can be seen that the
pitot-stagnation-pressure profiles predicted by
both the B-L and the B-B models are in good

agreement with experimental data upstream of the
incident shock. In the region about the incident
and the reflected shocks, these figures show that

the B-B model was able to predict correctly the
position of the reflected shock, whereas the B-L
model was not (see profiles at stations near x =
7.5 cm and 10 cm). This is because the B-B

model predicted correctly the size of the separa-
tion bubble which shifted the reflected shock up-

stream. Since the position of the reflected shock
depends on both the bleed-generated barrier
shocks and the separation bubbles on the surface
(if they exist), bleed-boundary-condition models
must account for these aspect in order to predict

accurately the reflected shock positions.

Downstream of the bleed region, the B-L
model accurately predicted the pitot-stagnation-

pressure profiles, but the B-B model did not. The
B-B model could not recover from the shock-

wave/boundary-layer interaction region because

the physics needed to describe it was not built into
the model. Since the B-L model assumes the

production of turbulence to be equal to its dissi-
pation, the accurate results generated by this
model downstream of the bleed region indicate
that the flow there is essentially in equilibrium as

far as turbulence quantities are concerned.

Since the B-B model predicted the size of the

separation bubble better, it also predicted the
bleed rate more accurately (see Table 2). Recall
that the further upstream the reflected shock lies,
the higher the bleed rate.

When the number of g_'d points was in-
creased for the B-L model, this model was also

able to predict correctly the size of the separation
bubble and position of the reflected shock. But,
for this fine mesh computation, the predicted
pitot-stagnation-pressure profiles downstream of
the bleed region were less satisfactory. It seems
that with the B-L model, if the separation bubble
exceeds a certain size, then its predictions become
less acceptable. However, if the flow does not
separate above the plate, then the B-L model gives
accurate results for the problem involving shock-
wave/boundary-layer interactions with bleed.

SUMMARY

Computations were performed to assess the
usefulness of two turbulence models -- Baldwin-
Lomax and Baldwin-Barth -- and issues related to

grid distribution by comparing predicted results
with experimental data. Computations show that
Baldwin-Lomax (B-L) can produce accurate
results for bleed rate as well as the boundary layer

(BL) pitot-stagnation-pressure profiles with a
relatively coarse grid provided separation bubbles
on the flat plate are either non-existent or very
small. With a finer grid, B-L predicted a larger
separation bubble. But, once B-L predicts a
separation bubble that is sufficiently large, then
results predicted downstream of it become less
satisfactory. If B-L does not predict separation

though one exists, then the predicted bleed rate
will be lower than should be, but the predicted

pitot-stagnation pressure downstream of the bleed
region will be accurate. Though B-B can predict
flow separation on the flat plate with a relatively
coarse grid, it too does not provide satisfactory
results for this problem if there is flow separation.
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Fig. 3 Chimexa overlapping grid system used (not all
grid points shown).

Fig. 1. Schematic diagram of problem studied by Willis,

et al. (Ref. 15).
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Fig. 2. Schematic diagram of problem studied. (a) Top
view. Co) Side view along cross section a-b.
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Fig. 4. Chimera grid near bleed holes. (a) Top view. (b)
Side view.
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Pig. 5. Mach number contours: Baldwin-Lomax turbulence model, coarse mesh.
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Fig. 6. Pressure contours (P/Po_): Baidwin-Lomax tul%ulence model, coarse mesh.
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Fig. 7. Mach number contours in bleed region.

See fig. 5 for scale. (a) No bleed, Baldwin-Barth.

(b) Bleed, Baldwin-Lomax. (c) Bleed, Baldwin-Barth.

Fig. 8. Pressure contours in bleed region.

See fig. 6 for scale. (a) No bleed, Baldwin-Barth.

0b) Bleed, Baldwin-Lomax. (c) Bleed, Baldwin-Barth.

Fig. 9. Surface pressure contours in bleed region. See fig. 6 for scale. (a) Baldwin-Lomax. (b) Baldwin-Bm'th.
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